Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Cornelis Lensink,* Graeme J. Gainsford and Menno J. R. Brandsma

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand

Correspondence e-mail: g.gainsford@irl.cri.nz

Key indicators

Single-crystal X-ray study
$T=170 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in main residue
R factor $=0.052$
$w R$ factor $=0.140$
Data-to-parameter ratio $=17.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

$\operatorname{Bis}(\mu-N$-(3-[3-indenyl]propyl-p-toluenesulfamidoN, O, O^{\prime})-dimethylamidodichorotitanium)

The title compound, $\left[\mathrm{Ti}\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{Cl}_{2}\right]$, crystallizes as a centrosymmetric dimer, with an eight-membered ring derived from the monomer sub-units by the formation of two $\mathrm{Ti}-$ $(\mathrm{N}, \mathrm{O})-\mathrm{S}-\mathrm{O}$ head-to-tail sequences around a crystallographic inversion centre. The titanium atoms each have a distorted octahedral geometry through the nitrogen and one oxygen of the sulfonamido group [$\mathrm{Ti} 1-\mathrm{O} 1, \mathrm{Ti}-\mathrm{N} 12.280$ (3), 2.091 (3) Å], one oxygen from the adjacent sulfonamide [$\mathrm{Ti}-$ O2 2.170 (3) A], a dimethylamido nitrogen and two chlorides.

Comment

The title compound, which is related to previously reported structures (Lensink, 1998, Lensink et al., 2001), crystallizes as a centrosymmetric dimer with an eight-membered ring derived from the monomer sub-units by the formation of two $\mathrm{Ti}-$ (N, O) $-\mathrm{S}-\mathrm{O}$ head-to-tail sequences around a crystallographic inversion centre (Fig. 1, Table 1). There are no significant intermolecular contacts in the crystal structure. The titanium atoms have a distorted octahedral geometry through the nitrogen and one oxygen of the sulfonamido group [Ti1$\mathrm{O} 1, \mathrm{Ti}-\mathrm{N} 12.280(3), 2.091$ (3) $\AA]$, one oxygen from the adjacent sulfonamide [$\mathrm{Ti}-\mathrm{O} 22.170$ (3) \AA], a dimethylamido nitrogen and two chlorides. A similar ring structure has been reported for the yttrium compound, bis((μ_{2}-trans-1,2-bis(2,4,6-tri-isopropylbenzene-sulfonamidato)cyclohexane$\left.N, N^{\prime}, O, O^{\prime}, \mathrm{O}^{\prime \prime}\right)$-bis(methylsilyl)-amido-yttrium(III)) (Goerlitzer et al., 1998).

The $\mathrm{Ti}-\mathrm{N} 2$ bond distance of 1.860 (4) \AA is consistent with $N(p \pi)-M(d \pi)$ interaction expected for a dimethylamide, and the $\mathrm{Ti}-\mathrm{Cl}$ bond distances and relevant geometric parameters are similar to those found in dichloro-(4-methyl-2-(tri methylsilylamino)pyridine- N, N^{\prime})-dimethylamino-dimethyl-amido-titanium (Fuhrmann et al., 1996). The $\mathrm{S}-\mathrm{O}$ bond

Received 27 August 2002
Accepted 3 September 2002
Online 13 September 2002

Figure 1
Molecular structure of $\left[\mathrm{Ti}\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{Cl}_{2}\right]$ (Farrugia, 1997). Displacement ellipsoids are drawn at the 30% probability level. H atoms have arbitrary radii.
distances $[1.471$ (3), 1.477 (3) \AA] reflect the equivalent dative binding of the O atoms to the titanium centres (Lensink et al., 2001). By comparison with the free 3-[3-indenyl]propyl group in N-(3-(3-indenyl)propyl)benzylammonium bromide (Groux et al., 1999), it appears that the total geometry of the group is unaffected by its link to the complex, with the only significant difference being close to the nitrogen N 1 , with an $\mathrm{N} 1-\mathrm{C} 8-$ C9-C10 torsion angle $74.8(5)^{\circ}$ in the complex, compared with $-54.4(3)^{\circ}$ in the free group.

Experimental

A solution of $\mathrm{C}_{9} \mathrm{H}_{7}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}(\mathrm{H}) \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}(0.13 \mathrm{~g}, 0.40 \mathrm{mmol})$ in benzene- $d_{6}(2 \mathrm{ml})$ was added dropwise to a solution of $\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{4}$ ($89 \mathrm{mg}, 0.40 \mathrm{mmol}$) dissolved in benzene- $d_{6}(3 \mathrm{ml})$, turning the mixture from yellow to orange. The mixture was refluxed over a period of 4 days. Subsequently $\mathrm{Me}_{3} \mathrm{SiCl}(108 \mathrm{mg}, 0.99 \mathrm{mmol})$ was slowly added. The mixture was stirred for 20 h , resulting in a darkbrown solution. Recrystallization from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane mixture resulted in crystals suitable for X-ray analysis. Yield: 20 mg (10%).

Crystal data

$\left[\mathrm{Ti}\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}\right) \mathrm{Cl}_{2}\right]$	$Z=2$
$M_{r}=489.30$	$D_{x}=1.407 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.688(3) \AA$	Cell parameters from 6100
$b=10.122(5) \AA$	\quad reflections
$c=16.212(7) \AA$	$\mu=2.6-25.8^{\circ}$
$\alpha=94.808(6)^{\circ}$	$T=0.71 \mathrm{~mm}^{-1}$
$\beta=100.973(5)^{\circ}$	Block, orange-brown
$\gamma=109.200(5)^{\circ}$	$0.36 \times 0.20 \times 0.16 \mathrm{~mm}$
$V=1154.9(9) \AA^{\circ}$	

Data collection

Siemens CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.393, T_{\text {max }}=0.892$
14834 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.140$
$S=0.94$
4641 reflections
264 parameters

4641 independent reflections 2627 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-9 \rightarrow 4$
$k=-12 \rightarrow 12$
$l=-20 \rightarrow 20$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0747 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.73 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.54 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

Ti1-N2	$1.860(4)$	Ti1-Cl2	$2.3196(14)$
Ti1-N1	$2.091(3)$	S1-O1	$1.471(3)$
Ti1-O2	$2.170(3)$	S1-O2	$1.477(3)$
Ti1-O1	$2.280(3)$	$\mathrm{S} 1-\mathrm{N} 1$	$1.566(3)$
Ti1-Cl1	$2.3010(16)$	$\mathrm{S} 1-\mathrm{C} 1$	$1.776(4)$
N2-Ti1-N1	$100.84(15)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{Ti} 1$	$134.6(3)$
$\mathrm{Cl} 1-\mathrm{Ti} 1-\mathrm{Cl} 2$	$95.64(5)$	$\mathrm{S} 1-\mathrm{N} 1-\mathrm{Ti} 1$	$99.79(16)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{S} 1$	$122.1(3)$		
Symmetry code: (i) $2-x, 1-y, 1-z$.			

All H atoms except those on methyl C atoms were constrained with a riding model, with an isotropic thermal parameter 1.2 times that of the equivalent U of their parent atom. Atom C20 was disordered over two sites (a / b), with final occupancies 0.78 (1)/0.22(1) and a common U of $0.069 \AA^{2}$.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank Dr J. Wikaira and Professor W. T. Robinson, University of Canterbury, for their assistance.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fuhrmann, H., Brenner, S., Arndt, P. \& Kempe R. (1996). Inorg. Chem. 35, 6742-6745.
Goerlitzer, H. W., Spiegler, M. \& Anwander, R. (1998). Eur. J. Inorg. Chem. 7, 1009-1014.
Groux, L. F., Belanger-Gariepy, F. \& Zargarian, D. (1999). Acta Cryst. C55, IUC9900130.
Lensink, C. (1998). J. Organomet. Chem. 553, 387-392.
Lensink, C., Gainsford, G. J. \& Baxter, N. I. (2001). Acta Cryst. C57, 366-367. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

